Reading

"A meshfree method based on the peridynamic model of solid mechanics"

aokomoriuta

Contents

  1. Introduction
  2. Prehistory of Peridynamics
  3. Peridynamics theory
  4. Numerical method for Peridynamics
  5. Result and conclusion
  6. My opinion

Introduction

Contents

  1. Introduction
  2. Prehistory of Peridynamics
  3. Peridynamics theory
  4. Numerical method for Peridynamics
  5. Result and conclusion
  6. My opinion

Failure of glass

5 key points of this paper

  • New physical theory Peridynamics is for Solid Mechanics
  • This paper proposed numerical method for Peridynamics
  • The method is meshfree and good at simulate cracks and failure
  • Failure of glass was computed and the result were shown
  • This paper is the first and original numerical method for Peridynamics, so current research should be improve this method

New numerical method based on Peridynamics is expected simply to solve violent deformation and failure of solid body

About this paper

Title
A meshfree method based on the peridynamic model of solid mechanics
Author
S.A. Silling, E. Askari

Department of Computational Physics, Sandia National Laboratories

Journal
Computers & Structures
Year and pages
2005, Volume 83, Issues 17–18, pp.1526–1535
DOI
http://dx.doi.org/10.1016/j.compstruc.2004.11.026

Prehistory of Peridynamics

Contents

  1. Introduction
  2. Prehistory of Peridynamics
  3. Peridynamics theory
  4. Numerical method for Peridynamics
  5. Result and conclusion
  6. My opinion

Previous theory

Based on Partial differential equations (PDEs)

\[{\partial \mathbf{v}\over\partial t^2}= {\partial^2 \mathbf{K}\over\partial t} + {1\over \rho} ((\lambda+\mu)\nabla(\nabla\cdot \mathbf{v})+\mu\Delta \mathbf{v})\]

Focus on local behavior at a point

What is the problem?

  1. PDEs need spatial derivatives
  2. Spatial derivatives need to assume continuous for any points
  3. However, cracks and failure are discontinuous

Previous solution

Spetial technique

For example: Supply initial condition of cracks

  • position of tip
  • growth direction
  • growth velocity
  • ...and so on

New solution

Peridynamics

A new theory for Solid Mechanics

  • proposed by Silling (2000)
  • doesn't need spatial derivatives
  • Details are described on next chapter

This paper shows numerical method for Peridynamics

Peridynamics theory

Contents

  1. Introduction
  2. Prehistory of Peridynamics
  3. Peridynamics theory
  4. Numerical method for Peridynamics
  5. Result and conclusion
  6. My opinion

Governing equation of motion

\[ \begin{split} \rho \left(\mathbf{X} \right) \ddot{\mathbf{u}} \left( \mathbf{X}, t \right) =& \mathbf{b} \left(\mathbf{X}, t \right) \\ &+ \int_H \mathbf{f} \left(\mathbf{\eta}, \mathbf{\xi} \right) dV \end{split} \]

Not partial differential but integral for space

Position of a point

\[ \rho \left(\color{red}{\mathbf{X}} \right) \ddot{\mathbf{u}} \left( \color{red}{\mathbf{X}}, t \right) = \mathbf{b} \left(\color{red}{\mathbf{X}}, t \right) + \int_H \mathbf{f} \left(\mathbf{\eta}, \mathbf{\xi} \right) dV \]

\(\mathbf{X}\): in the reference configuration = initial position (Material description)

Do not confuse \(\mathbf{x}\): in the current configuration (Spatial description)

Why does this paper use lower case x for material description??

Displacement of a point

\[ \rho \left(\mathbf{X} \right) \ddot{\color{red}{\mathbf{u}}} \left( \mathbf{X}, t \right) = \mathbf{b} \left(\mathbf{X}, t \right) + \int_H \mathbf{f} \left(\mathbf{\eta}, \mathbf{\xi} \right) dV \]

\(\mathbf{u}\): displacement whose initial position is \(\mathbf{X}\) (Material description)

Do not confuse flow velocity; used on Fluid Dynamics

Relative pos. & disp.

\[ \rho \left(\mathbf{X} \right) \ddot{\mathbf{u}} \left( \mathbf{X}, t \right) = \mathbf{b} \left(\mathbf{X}, t \right) + \int_H \mathbf{f} \left(\color{red}{\mathbf{\xi}}, \color{red}{\mathbf{\eta}} \right) dV \]

\(\mathbf{\xi} = \mathbf{X}' - \mathbf{X}\): initial relative position

\(\mathbf{\eta} = \mathbf{u}' - \mathbf{u}\): relative displacement

\('\) means another point

Note: \(\mathbf{\xi} + \mathbf{\eta}\) = current relative position

\(x, X, u, U, ξ, η\)

X X' x x' Ref. config. Cur. config. u(X) u(X') ξ η ξ+η

Neighborhood

\[ \rho \left(\mathbf{X} \right) \ddot{\mathbf{u}} \left( \mathbf{X}, t \right) = \mathbf{b} \left(\mathbf{X}, t \right) + \int_{\color{red}{H}} \mathbf{f} \left(\mathbf{\eta}, \mathbf{\xi} \right) dV \]

\(H\) assumes spherical region

whose radius = \(\delta\) (Horizon)

for convinience

Reference configuration

Inertia & body force

\[ \color{red}{\rho \left(\mathbf{X} \right) \ddot{\mathbf{u}} \left( \mathbf{X}, t \right)} = \color{red}{\mathbf{b}} \left(\mathbf{X}, t \right) + \int_H \mathbf{f} \left(\mathbf{\eta}, \mathbf{\xi} \right) dV \]

\(\rho \ddot{\mathbf{u}}\):Inertia force

\(\mathbf{b}\):body force per volume

Pairwise force function

\[ \rho \left(\mathbf{X} \right) \ddot{\mathbf{u}} \left( \mathbf{X}, t \right) = \mathbf{b} \left(\mathbf{X}, t \right) + \int_H \color{red}{\mathbf{f}} \left(\mathbf{\eta}, \mathbf{\xi} \right) dV \]

Evaluate how the two points interact with each other

Remember: \(\mathbf{\xi} = \mathbf{x}' - \mathbf{x}, \mathbf{\eta} = \mathbf{u}' - \mathbf{u}\)

Bond

Bond: the interaction model

e.g. Bond "Spring" to simulate elastic body

Pairwise force function \(f\) specifies
the numerical model of the bond

e.g. for Bond "Spring" : \( \mathbf{f} = C \frac{\left| \mathbf{\xi} + \mathbf{\eta} \right| - \left| \mathbf{\xi} \right|}{\left| \mathbf{\xi} \right|} \frac{\mathbf{\xi} + \mathbf{\eta}}{\left| \mathbf{\xi} + \mathbf{\eta} \right|} \)

Required properties of \(f\)

Conservation of momentum

Linear
\[ \mathbf{f} \left(-\mathbf{\eta}, -\mathbf{\xi} \right) = -\mathbf{f} \left(\mathbf{\eta}, \mathbf{\xi} \right) \]
Angular
\[ \left(\mathbf{\xi} + \mathbf{\eta} \right) \times \mathbf{f} \left(\mathbf{\eta}, \mathbf{\xi} \right) = \mathbf{0} \]

Force along current relative pos.

Elastic body

Depends only on distanece \(y = \left|\mathbf{\xi} + \mathbf{\eta} \right|\)

The microelastic material: \[\mathbf{f} \left(\mathbf{\eta}, \mathbf{\xi} \right) = \frac{\mathbf{\xi} + \mathbf{\eta}}{\left| \mathbf{\xi} + \mathbf{\eta} \right|} f \]

\[f = \frac{\partial w}{\partial y} \left(y, \mathbf{\xi} \right) \]

\(w\) is microptential

Isotropic elastic body

\[f = cs\]

  • \(c\): constant, similar to spring coef.
  • \(s\): bond strech, equivalent to strain \[s = \frac{y - \left| \mathbf{\xi} \right|}{\left| \mathbf{\xi} \right|} \]

Failure

Protytype Microelastic Brittle model: \[f = cs \cdot \mu \]

\(\mu\): the bonds exists or not

  • \(0\), if \((s > s_0)\) = failure has never happend
  • \(1\), otherwise

\(s_0\): "critical streth"
material constant for failure criterion

How does PMB work?

A B A' B'
A B A' B'
A B A' B' Crack
A-A'13 bonds13 bonds13 bonds
B-B'13 bonds11 bonds8 bonds
stateIsotropicAnisotropicFailure

Damage function

\[\phi \left( \mathbf{X} \right) = \frac{\int_H \mu \left(\mathbf{X}\right) dV}{\int_H dV} \]

Indication of local damage at the point \(\mathbf{X}\)
Num. of bonds(\(\mu\))All less nothing
\(\phi\) 0 0<11
damage Neversome complete

Model params of PMB

spling-like constant: \(c\)
\[c = \frac{18k}{\pi \delta^4}\]
critical strech: \(s_0\)
\[s_0 = \sqrt{\frac{5 G_0}{9 k \delta}} \]
  • \(k\): bulk moduls
  • \(G_0\): The work required to break all bonds per unit area

Improvements

Models mentioned above is very basic, sightly too simple

Many improved models were proposed before and after this paper

Check them before you apply

Numerical method for Peridynamics

Contents

  1. Introduction
  2. Prehistory of Peridynamics
  3. Peridynamics theory
  4. Numerical method for Peridynamics
  5. Result and conclusion
  6. My opinion

Discritized equation

\[ \rho \left(\mathbf{X} \right) \] \[ \ddot{\mathbf{u}} \left( \mathbf{X}, t \right) \] \[ = \] \[ \mathbf{b} \left(\mathbf{X}, t \right) \] \[ \int_H \] \[ \mathbf{f} ( \] \[ \mathbf{\eta}, \] \[ \mathbf{\xi} \] \[ ) \] \[ dV \]
point number \(i\), time step \(k\)
\[ \rho_i \] \[ {\ddot{\mathbf{u}}_i}^k \] \[ = \] \[ {\mathbf{b}_i}^k \] \[ \sum_j \] \[ \mathbf{f} ( \] \[ {\mathbf{\eta}_{ij}}^k, \] \[ \mathbf{\xi}_{ij} \] \[ ) \] \[ V_j \]

Discritized PMB

\[ {\mathbf{f}_{ij}}^k = \left( c {s_{ij}}^k \cdot {\mu_{ij}}^k \right) \mathbf{n} \]

  • \( {s_{ij}}^k = \frac{\left| \xi_{ij} + {\eta_{ij}}^k \right| - \left| \xi_{ij} \right|}{\left| \xi_{ij} \right|} \)
  • \( {\mu_{ij}}^k = \begin{cases} 1 & \forall \kappa < k \quad {s_{ij}}^\kappa < s_0 \\ 0 & \text{otherwise} \end{cases} \)
  • \( {\mathbf{n}_{ij}}^k = \frac{\xi_{ij} + {\eta_{ij}}^k }{\left| \xi_{ij} + {\eta_{ij}}^k \right|} \)

Stable condition

From 1-dim analysys:

\[ \forall i \quad \Delta t < \sqrt{\frac{2 \rho_i}{\sum_j \frac{\partial \mathbf{f}_{ij}}{\partial \mathbf{\eta}_{ij}} V_j }} \]

Depends on \(\delta\) (\(\sum_j\)), not \(\Delta x\)

Boundary condition

conditonfixed value
force\(\mathbf{b}\)
displacement\(\mathbf{u}\)

Points arrengement

  1. Arrange points along the body shape
  2. Calculate volume for a point, use
    • Delaunay triangulation
    • Voronoi diagram

Simply put, no meshing

Result and conclusion

Contents

  1. Introduction
  2. Prehistory of Peridynamics
  3. Peridynamics theory
  4. Numerical method for Peridynamics
  5. Result and conclusion
  6. My opinion

Condition of growing crack

Initial condition
  • \(\rho = 8000 \)[kg/m3]
  • \(E = 192 \)[GPa]
  • \(s_0 = 0.02 \)
  • \(\delta = 1.6 \)[mm]
Vertical displacement

Result of growing crack

Elastic energy density
Converence of crack growth speed'

Ball impacts on cylinder

4.16[g] 10[mm] 35[m/s] 25[mm] 34[mm]

Material: glass

  • \(\rho = 2200 \)[kg/m3]
  • \(k = 14.9 \)[GPa]
  • \(s_0 = 0.0005 \)
  • \(\Delta x = 0.5 \)[mm]
  • \(\delta = 1.5 \)[mm]

Result of cylinder

Hertzian cracks occour

Ball impacts on plate

4.16[g] 10[mm] 100[m/s] 2.5[mm] 74[mm]

Same material (glass)

Result of plate

Fragmentation occours

Conclusion

  • New physical theory Peridynamics is for Solid Mechanics
  • This paper proposed numerical method for Peridynamics
  • The method is meshfree and good at simulate cracks and failure
  • Failure of glass was computed and the result were shown
  • This paper is the first and original numerical method for Peridynamics, so current research should be improve this method

New numerical method based on Peridynamics is expected simply to solve violent deformation and failure of solid body

Advantages than SPH

No need of spatial derivatives

  • No need of neighboring search
  • No tensile instability

My opinion

Contents

  1. Introduction
  2. Prehistory of Peridynamics
  3. Peridynamics theory
  4. Numerical method for Peridynamics
  5. Result and conclusion
  6. My opinion

My opnions for

  • Is this "particle method"?
  • How useful for fluid dynamics?

Is this particle method?

Prof. Shibata (NIT, Gifu) said
Not particle method but particle-based method
My opinion
Definitely "No"
This is Lagrangian grid method

particle or grid?

Grid Method
Fixed connection between computing points
Particle Method
Changeable connection between computing point at every time steps

Eulerian or Lagrangian

Eulerian method
Fixed computing points on space
Lagrangian Method
Movable computing points

How about Peridynamics?

Computing points move when each time
→ Lagrangian
Bonds (connection) are set up by initial condition
→ Grid

∴ Peridynamics is grid method (Lagrangian)

Is this connected-DEM?

Discrete Element Method

= Particle method in a broad sense

Normal DEM
Connected-DEM

Difference from DEM

connected-DEMPeridynamics
Shape of ElementSphareNot specified
Interaction fromCollisionedBond
Force modelKelvin-VoigtPairwise force function
Theory based ondiscontinuous bodyContinuum dynamics
Instanceexistsnot exists

Peridynamics is NOT family of DEM

Solving fluid dynamics?

Bonds are set up when initial condition

→ cannot unite by violently deformation

∴ Peridynamics can be applied to only Solid

But enough for Solid body

In Solid Dynamics;

  • Failure by violently deformation, not unite
  • Bonds and \(\mu\) can represent failue well

Fluid-Structure Interaction

Peridynamics = Lagrangian

∴ seems good with Particle method

return 0;