"A meshfree method based on the peridynamic model of solid mechanics"
aokomoriuta
New numerical method based on Peridynamics is expected simply to solve violent deformation and failure of solid body
Department of Computational Physics, Sandia National Laboratories
Based on Partial differential equations (PDEs)
\[{\partial \mathbf{v}\over\partial t^2}= {\partial^2 \mathbf{K}\over\partial t} + {1\over \rho} ((\lambda+\mu)\nabla(\nabla\cdot \mathbf{v})+\mu\Delta \mathbf{v})\]
Focus on local behavior at a point
Spetial technique
For example: Supply initial condition of cracks
Peridynamics
A new theory for Solid Mechanics
This paper shows numerical method for Peridynamics
\[ \begin{split} \rho \left(\mathbf{X} \right) \ddot{\mathbf{u}} \left( \mathbf{X}, t \right) =& \mathbf{b} \left(\mathbf{X}, t \right) \\ &+ \int_H \mathbf{f} \left(\mathbf{\eta}, \mathbf{\xi} \right) dV \end{split} \]
Not partial differential but integral for space
\[ \rho \left(\color{red}{\mathbf{X}} \right) \ddot{\mathbf{u}} \left( \color{red}{\mathbf{X}}, t \right) = \mathbf{b} \left(\color{red}{\mathbf{X}}, t \right) + \int_H \mathbf{f} \left(\mathbf{\eta}, \mathbf{\xi} \right) dV \]
\(\mathbf{X}\): in the reference configuration = initial position (Material description)
Do not confuse \(\mathbf{x}\): in the current configuration (Spatial description)
Why does this paper use lower case x for material description??
\[ \rho \left(\mathbf{X} \right) \ddot{\color{red}{\mathbf{u}}} \left( \mathbf{X}, t \right) = \mathbf{b} \left(\mathbf{X}, t \right) + \int_H \mathbf{f} \left(\mathbf{\eta}, \mathbf{\xi} \right) dV \]
\(\mathbf{u}\): displacement whose initial position is \(\mathbf{X}\) (Material description)
Do not confuse flow velocity; used on Fluid Dynamics
\[ \rho \left(\mathbf{X} \right) \ddot{\mathbf{u}} \left( \mathbf{X}, t \right) = \mathbf{b} \left(\mathbf{X}, t \right) + \int_H \mathbf{f} \left(\color{red}{\mathbf{\xi}}, \color{red}{\mathbf{\eta}} \right) dV \]
\(\mathbf{\xi} = \mathbf{X}' - \mathbf{X}\): initial relative position
\(\mathbf{\eta} = \mathbf{u}' - \mathbf{u}\): relative displacement
\('\) means another point
Note: \(\mathbf{\xi} + \mathbf{\eta}\) = current relative position
\[ \rho \left(\mathbf{X} \right) \ddot{\mathbf{u}} \left( \mathbf{X}, t \right) = \mathbf{b} \left(\mathbf{X}, t \right) + \int_{\color{red}{H}} \mathbf{f} \left(\mathbf{\eta}, \mathbf{\xi} \right) dV \]
\(H\) assumes spherical region
whose radius = \(\delta\) (Horizon)
for convinience
\[ \color{red}{\rho \left(\mathbf{X} \right) \ddot{\mathbf{u}} \left( \mathbf{X}, t \right)} = \color{red}{\mathbf{b}} \left(\mathbf{X}, t \right) + \int_H \mathbf{f} \left(\mathbf{\eta}, \mathbf{\xi} \right) dV \]
\(\rho \ddot{\mathbf{u}}\):Inertia force
\(\mathbf{b}\):body force per volume
\[ \rho \left(\mathbf{X} \right) \ddot{\mathbf{u}} \left( \mathbf{X}, t \right) = \mathbf{b} \left(\mathbf{X}, t \right) + \int_H \color{red}{\mathbf{f}} \left(\mathbf{\eta}, \mathbf{\xi} \right) dV \]
Evaluate how the two points interact with each other
Remember: \(\mathbf{\xi} = \mathbf{x}' - \mathbf{x}, \mathbf{\eta} = \mathbf{u}' - \mathbf{u}\)
Bond: the interaction model
e.g. Bond "Spring" to simulate elastic body
Pairwise force function \(f\) specifies
the numerical model of the bond
e.g. for Bond "Spring" : \( \mathbf{f} = C \frac{\left| \mathbf{\xi} + \mathbf{\eta} \right| - \left| \mathbf{\xi} \right|}{\left| \mathbf{\xi} \right|} \frac{\mathbf{\xi} + \mathbf{\eta}}{\left| \mathbf{\xi} + \mathbf{\eta} \right|} \)
Conservation of momentum
∴ Force along current relative pos.
Depends only on distanece \(y = \left|\mathbf{\xi} + \mathbf{\eta} \right|\)
The microelastic material: \[\mathbf{f} \left(\mathbf{\eta}, \mathbf{\xi} \right) = \frac{\mathbf{\xi} + \mathbf{\eta}}{\left| \mathbf{\xi} + \mathbf{\eta} \right|} f \]
\[f = \frac{\partial w}{\partial y} \left(y, \mathbf{\xi} \right) \]
\(w\) is microptential
\[f = cs\]
Protytype Microelastic Brittle model: \[f = cs \cdot \mu \]
\(\mu\): the bonds exists or not
\(s_0\): "critical streth"
material constant for failure criterion
A-A' | 13 bonds | 13 bonds | 13 bonds |
---|---|---|---|
B-B' | 13 bonds | 11 bonds | 8 bonds |
state | Isotropic | Anisotropic | Failure |
\[\phi \left( \mathbf{X} \right) = \frac{\int_H \mu \left(\mathbf{X}\right) dV}{\int_H dV} \]
Num. of bonds(\(\mu\)) | All | less | nothing |
---|---|---|---|
\(\phi\) | 0 | 0<1 | 1 |
damage | Never | some | complete |
Models mentioned above is very basic, sightly too simple
Many improved models were proposed before and after this paper
Check them before you apply
\[ \rho \left(\mathbf{X} \right) \] | \[ \ddot{\mathbf{u}} \left( \mathbf{X}, t \right) \] | \[ = \] | \[ \mathbf{b} \left(\mathbf{X}, t \right) \] | \[ \int_H \] | \[ \mathbf{f} ( \] | \[ \mathbf{\eta}, \] | \[ \mathbf{\xi} \] | \[ ) \] | \[ dV \] |
↓ | |||||||||
point number \(i\), time step \(k\) | |||||||||
\[ \rho_i \] | \[ {\ddot{\mathbf{u}}_i}^k \] | \[ = \] | \[ {\mathbf{b}_i}^k \] | \[ \sum_j \] | \[ \mathbf{f} ( \] | \[ {\mathbf{\eta}_{ij}}^k, \] | \[ \mathbf{\xi}_{ij} \] | \[ ) \] | \[ V_j \] |
\[ {\mathbf{f}_{ij}}^k = \left( c {s_{ij}}^k \cdot {\mu_{ij}}^k \right) \mathbf{n} \]
From 1-dim analysys:
\[ \forall i \quad \Delta t < \sqrt{\frac{2 \rho_i}{\sum_j \frac{\partial \mathbf{f}_{ij}}{\partial \mathbf{\eta}_{ij}} V_j }} \]
Depends on \(\delta\) (\(\sum_j\)), not \(\Delta x\)
conditon | fixed value |
---|---|
force | \(\mathbf{b}\) |
displacement | \(\mathbf{u}\) |
Simply put, no meshing
Material: glass
Same material (glass)
New numerical method based on Peridynamics is expected simply to solve violent deformation and failure of solid body
No need of spatial derivatives
∴ Peridynamics is grid method (Lagrangian)
Discrete Element Method
= Particle method in a broad sense
connected-DEM | Peridynamics | |
---|---|---|
Shape of Element | Sphare | Not specified |
Interaction from | Collisioned | Bond |
Force model | Kelvin-Voigt | Pairwise force function |
Theory based on | discontinuous body | Continuum dynamics |
Instance | exists | not exists |
Peridynamics is NOT family of DEM
Bonds are set up when initial condition
→ cannot unite by violently deformation
∴ Peridynamics can be applied to only Solid
In Solid Dynamics;
Peridynamics = Lagrangian
∴ seems good with Particle method
return 0;